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Abstract. We calculate the leading order BFKL amplitude for the exclusive diffractive process
γ∗
L(Q2

1)γ∗
L(Q2

2) → ρ0
Lρ0

L in the forward direction, which can be studied in future high energy e+e− linear
colliders. The resummation effects are very large compared to the fixed-order calculation. We also estimate
the next-to-leading logarithmic corrections to the amplitude by using a specific resummation of higher order
effects and find a substantial growth with energy, but smaller than in the leading logarithmic approximation.

1 Introduction

The next generation of e+e− colliders will offer the possibil-
ity of clean testing of QCD dynamics. By selecting events in
which two vector mesons are produced with a large rapidity
gap in between, through the scattering of two highly virtual
photons, one accesses a kinematical regime in which a per-
turbative approach is justified. If additionally one selects
events with comparable photon virtualities, the perturba-
tive Regge dynamics of QCD should dominate and allow
the use of resummation techniques of the BFKL [1] type. In
this paper we study these effects in the case of the reaction
(see Fig. 1)
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Fig. 1. The process γ∗
L(q1) γ∗

L(q2) → ρ0
L(k1) ρ0

L(k2). The box
represents the BFKL Green’s function, and the t-channel gluons
couple to the quark lines in all possible ways
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γ∗
L(q1) γ∗

L(q2) → ρL(k1) ρL(k2) (1)

in the forward region, i.e. −t = −(q1 − k1)2 = −tmin,
where the virtualitiesQ2

1 = −q21 ,Q2
2 = −q22 of the scattered

photons play the role of the hard scales.
This is an interesting process to study, first because

the experimental signature is simple: double tagged events
in high energy e+e− collisions [2], with two longitudinally
polarized rho mesons in the final state. The non-zero virtu-
alities of the photons allow studying also the forward region.
Second, the theoretical calculation can be performed ana-
lytically and gives a simple answer which makes it easy to
investigate BFKL effects. This is partly because in the for-
ward region we are studying, the amplitude for transversely
polarized photons vanishes identically [3].

No data exist yet for the process (1) at sufficiently
high energies, but some experimental data exist for Q2

2
small [4] which may be analyzed [5] in terms of generalized
distribution amplitudes [6]. Related reactions have been
calculated, both at the Born level and using BFKL resum-
mation. The similar process with real incoming photons,
γγ → V1V2 and large t where the hard scale is provided
by the momentum transfer instead of the photon virtual-
ities, was studied in [7, 8], and the process γp → V X at
large t, has been studied both for heavy [9] and light [10]
vector mesons. The advantage of the latter process is that
there now exists high quality data from HERA [11], and
the BFKL calculations reproduce the measured differen-
tial cross sections for longitudinal ρ meson production and
for J/ψ production very well, while the Born level calcu-
lations do not work so well [9–11]. At the same time the
cross section for transversely polarized ρ mesons is not
well understood [10].
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In a recent paper [3], the scattering amplitude of the
process (1) was calculated in the Born approximation and
the feasibility of a dedicated experiment was proved. The
production amplitude decreases dramatically with t so that
its magnitude at t = tmin dictates the rate of the reaction.
In this paper, we report on a calculation of BFKL ef-
fects in the leading order approximation at t = tmin. We
find that the leading logarithmic (LL) BFKL resummation
greatly enhances the cross section, as previously observed
in other reactions [8,12–14]. In addition, we estimate next-
to-leading logarithmic (NLL) effects by the use of the BLM
scale fixing prescription [15] supplemented by the resum-
mation scheme of [16–18]. We show that there is still a
substantial increase in the cross section compared to fixed-
order calculations, but smaller than the LL calculation. It
would be interesting to compare our estimates with the
ones based on the recently available NLL impact factor for
the process γ∗ → V of [19] and the NLL BFKL kernel [20].

2 Leading order BFKL forward amplitude

2.1 General expression

In the BFKL framework, the amplitude of the process (1)
can be expressed through the inverse Mellin transform with
respect to the squared center-of-mass energy s as

A(s, t) = is
∫

dω
2πi

eωY fω(r2), (2)

where t− tmin ∼ −r2, (r is considered as Euclidean, as is
any two-dimensional vector in the following), and Y is the
rapidity variable, Y = ln(s/s0). The minimum momentum
transfer is here givenby tmin ∼ Q2

1Q
2
2/s [3]. In theparticular

case where r2 = 0, the BFKL Green’s function can be easily
obtained in momentum space [21]. In this case, the impact
representation for fω(0) reads

fω(0) =
1
2

∫
dk2

k3

dk′2

k′3 Φab
1 (k)Φab

2 (k′)

×
∫ ∞

−∞
dν

1
ω − ω(ν)

(
k2

k′2

)iν

, (3)

where the integration over angles has been performed. The
functions Φab

i are the impact factors describing the cou-
pling of the BFKL pomeron to vertex 1 or 2, and a, b are
color indices. The function ω(ν) is the BFKL characteristic
function which is defined by [1]

ω(ν) = ᾱsχ(ν), (4)

with ᾱs ≡ αsNc/π and

χ(ν) = 2ψ(1) − ψ

(
1
2

+ iν
)
− ψ

(
1
2
− iν

)
,

ψ(x) = Γ ′(x)/Γ (x). (5)

The general solution for arbitrary values of t is more in-
volved [22] and will not be discussed here. We only want
to stress that it has a simple expression at the Born level,

A = is
∫

d2k

k2(r − k)2
Φab

1 (k, r − k)Φab
2 (k, r − k), (6)

which has recently been evaluated in [3]. The special case
r2 = 0 of (6) can be readily obtained from (3). This relation
will be studied in Sect. 2.2. The impact factor γ∗

L → ρL is
given at t = tmin by [3]

Φab
i (k, r = 0) = CabQi

∫ 1

0
dzzz̄φ(z)

[
1
m2

i

− 1
k2 +m2

i

]
,

(7)
where m2

i = Q2
i zz̄ (with z̄ = 1 − z), φ(z) is the distri-

bution amplitude of the meson which is here given by its
asymptotic form φ(z) = 6zz̄, and1

Cab =
1

(2π)2
16π2αs

e√
2
δab

2Nc
fρ, (8)

where fρ is the ρ0−meson decay constant.
Inserting (7) and (8) in (3) we get

fω(r2 = 0)

= 4πα2
sαem

N2
c − 1
N2

c

f2
ρQ1Q2

∫ 1

0
dz1z1z̄1φ(z1)

×
∫ 1

0
dz2z2z̄2φ(z2)

∫ ∞

−∞
dν

1
ω − ω(ν, n)

×
[∫

dk2

k3

(
1
m2 − 1

k2 +m2

)
k2iν

]

×
[∫

dk′2

k′3

(
1
m2 − 1

k′2 +m2

)
k′−2iν

]
. (9)

Let us denote the expressions in the square brackets by
I(z, ν) and I(z,−ν) respectively. It is straightforward
to put the propagators on a common denominator and
show that

I(z, ν)

= − (
m2)− 3

2 +iν
Γ

(
3
2
− iν

)
Γ

(
− 1

2
+ iν

)
(10)

= − (
Q2

1
)− 3

2 +iν
(zz̄)− 3

2 +iν
Γ

(
3
2
− iν

)
Γ

(
− 1

2
+ iν

)
.

Next, the z integrals can also be done. We have
∫ 1

0
dz zz̄φ(z)I(z, ν)

= − (
Q2

1
)− 3

2 +iν
Γ

(
3
2
− iν

)
Γ

(
− 1

2
+ iν

)

1 The first factor 1/(2π)2 differs from [3] and comes from the
convention for impact factors.
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×
∫ 1

0
dz 6 (zz̄)

1
2 +iν

= −6
√

π 2−2−2iν (
Q2

1
)− 3

2 +iν
(11)

×Γ
(

3
2
− iν

)
Γ

(
− 1

2
+ iν

)
Γ

( 3
2 + iν

)
Γ (2 + iν)

,

since the integral over z is just the definition of the Euler
beta function. Finally this yields the Mellin transform

fω(r2 = 0) = 9π2α2
sαem

N2
c − 1
N2

c

f2
ρQ1Q2

×
∫ ∞

−∞
dν

1
ω − ω(ν)

(
Q2

1
)−3/2+iν (

Q2
2
)−3/2−iν

(12)

×Γ 2
( 3

2 − iν
)
Γ 2

( 3
2 + iν

)
Γ

(− 1
2 − iν

)
Γ

(− 1
2 + iν

)
Γ (2 − iν)Γ (2 + iν)

,

which immediately leads to thefinal result for the amplitude
(2)

A(s, tmin, Q1, Q2) = is 9π2α2
sαem

N2
c − 1
N2

c

f2
ρ

× 1
(Q1Q2)2

∫ ∞

−∞
dν eω(ν)Y

(
Q2

1

Q2
2

)iν

(13)

×Γ 2
( 3

2 − iν
)
Γ 2

( 3
2 + iν

)
Γ

(− 1
2 − iν

)
Γ

(− 1
2 + iν

)
Γ (2 − iν)Γ (2 + iν)

.

We define R ≡ Q1/Q2 and write this as

A(s, tmin, Q1, Q2) = is
N2

c − 1
N2

c

9π2α2
sαemf

2
ρ

(Q1Q2)2
J(Y,R), (14)

with

J(Y,R) =
∫ ∞

−∞
dν eω(ν)Y R2iν (15)

×Γ 2
( 3

2 − iν
)
Γ 2

( 3
2 + iν

)
Γ

(− 1
2 − iν

)
Γ

(− 1
2 + iν

)
Γ (2 − iν)Γ (2 + iν)

.

We now want to evaluate the integral J . We have three
possibilities at hand:
(i) numerically,
(ii) saddle point approximation and
(iii) sum over residues of poles of the integrand.

The first two methods are used to obtain BFKL results
in the rest of this paper.

2.2 Born limit

A very valuable and non-trivial check on the BFKL result
as well as the Born result is the fact that in the limit Y → 0
(no evolution) or alternatively αs → 0 (the gluons in the
ladder do not couple to each other) the BFKL amplitude
must reduce to the Born level result. In Appendix A we

show, using method (iii) for the evaluation of the integral,
that our BFKL result (13) does indeed reduce to the correct
Born level results derived in [3], first for the special case
R = 1 and the DGLAP-like limitR� 1, and finally for the
general case R �= 1. Note that the calculations presented
in the Appendix are done in a completely different way
than in the Born level calculation in [3], so the agreement
is very convincing.

The main results from performing the Born limit are
presented in (51), (55) and (58).

2.3 Saddle point approximation of the BFKL amplitude

For R = 1 the integrand has a saddle point at ν = 0, but
the product of Γ -functions that multiplies the exponential
is not very broad. This means the approximation will yield
a too large answer. But let us try anyway. The expression
multiplying the exponential in the integrand at ν = 0 takes
the value π3/4, so for the case Q1 = Q2 we get

J(Y, 1) ∼ π3√π
4

e4 ln 2ᾱsY√
14ᾱsζ(3)Y

, Y � 1, (16)

so the BFKL amplitude is

A(s, t = tmin, Q1 = Q2 = Q) (17)

∼ isπ5√π
9(N2

c − 1)
4N2

c

α2
sαemf

2
ρ

Q4

e4 ln 2ᾱsY√
14ᾱsζ(3)Y

.

However, we can do better than this. We can keep the
general caseQ1 �= Q2 withR ≡ Q1/Q2. The integral is then

J(Y,R) =
∫ ∞

−∞
dν eω(ν)Y +2iν ln Rg

(
1
2

+ iν
)
, (18)

where g
(
γ = 1

2 + iν
)

was defined in (38). Expanding the
exponent to second order we see that the saddle point
is shifted:

ω(ν)Y + 2iν lnR

∼ ω(0)Y + 2i lnRν +
ω′′(0)Y

2
ν2 (19)

∼ ω′′(0)Y
2

(
ν +

2i lnR
ω′′(0)Y

)2

+
2 ln2R

ω′′(0)Y
+ ω(0)Y,

and we can shift the integration variable accordingly to get
a Gaussian integral. The result is now

J(Y,R) ∼ π3√π
4

e4 ln 2ᾱsY√
14ᾱsζ(3)Y

exp
(
− ln2R

14ᾱsζ(3)Y

)
,

Y � 1, (20)

and

A(s, t = tmin, Q1, Q2)

∼ is π5√π
9(N2

c − 1)
4N2

c

α2
sαemf

2
ρ

Q2
1Q

2
2

e4 ln 2ᾱsY√
14ᾱsζ(3)Y
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Fig. 2. Exact numerical result (solid line) and saddle point
approximation (dashed) to the integral J(Y, R) for R = 1 (top)
and R = 10 (bottom)

× exp
(
− ln2R

14ᾱsζ(3)Y

)
. (21)

These approximations can be compared to numerical
evaluations of the integral for each value of Y . This is illus-
trated in Fig. 2. We see that the saddle point approximation
gives the correct asymptotic behavior for large Y and is
less accurate for smaller Y. For R = 1 the approximate
answer is about 40% too big for Y ∼ 2 and about 10% too
big for Y ∼ 10. For R = 10 the approximation is slightly
better. Note that the Linear Collider is likely to test regions
with Y � 5, where the saddle point approximation works
relatively well.

2.4 Leading order results

To obtain definite predictions we need to define our pa-
rameters. The ρ meson decay constant and the electro-
magnetic coupling take the values fρ = 216 MeV [23] and
αem = 1/137, respectively. There are furthermore three
parameters in the calculation: αs in the prefactor, which
gives the strength of the coupling of the pomeron to the
impact factor; ᾱs in the BFKL exponent, which gives the
strength of the coupling of the gluons inside the pomeron;
and the energy scale of the rapidity Y .

For all cases with a running strong coupling we use a
three-loop running αs(µ2) [24] with µ2 = cαQ1Q2. Unless

0 2 4 6 8 10
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1000

10000

100000.

�A�BFKL��2 � �A�Born��2

R�1

R�5

R�50

Fig. 3. Ratio of the leading order BFKL cross section dσ
dt

∣
∣
tmin

to the Born level cross section as a function of the rapidity Y ,
using ᾱs = 0.2. The solid curve is for R = Q1/Q2 = 1, the
dashed curve is for R = 5, and the dotted curve is for R = 50

otherwise stated, we use this running coupling with cα = 1
in the prefactor of the amplitude.

At LL accuracy, ᾱs is a fixed parameter, i.e., it does
not run with the gluon momenta in the BFKL ladder.
We choose to, however, let it depend on the given Q1
and Q2, which are external to the pomeron but provide a
reasonable choice; we thus choose ᾱs = Nc

π αs(Q1Q2). The
pomeron intercept is determined by ᾱs, and it is known to
be too large when comparing to HERA data. Our chosen
values give quite large pomeron intercepts, but we do not
want to artificially suppress the growth by choosing very
small values of ᾱs. Instead we will see in Sect. 3 that the
growth becomes slower when NLL corrections to the BFKL
evolution are included.

The rapidity is defined as

Y = ln
(
cY

s

Q1Q2

)
, (22)

where cY is a constant that is not constrained at LL ac-
curacy. As discussed in [14] this constant is related to the
average attained values of z1,2 in the process. The authors
of [14] chose a very small value cY = 0.01. We estimate
the corresponding effect more conservatively and choose
cY = 0.3 for the cross section predictions shown below (see
also [13]).

We will now investigate the sensitivity to these choices.
Note that all the results shown in this section have been
obtained by numerical evaluation of the integral over ν and
not by the saddle point approximation.

We begin by comparing the energy dependence of the
BFKL cross section and the Born cross section. Figure 3
shows the ratio of the differential cross sections dσ/dt|t=tmin

calculated fromBFKLand at theBorn level, as a function of
the rapidity Y for three choices ofQ1 andQ2, and for a fixed
value ᾱs = 0.2. There is clearly a strong Y -dependence, as
seen from (21). Note that all of the Y -dependence of this
ratio comes from the BFKL amplitude, since the Born level
result is independent of the energy. Figure 4 shows the same
plot but using our “standard” choice of ᾱs = Nc

π αs(Q1Q2).
The difference between Figs. 3 and 4 serves to illustrate the
sensitivity to the choice of ᾱs and shows that using a Q-
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Fig. 4. Same as Fig. 3 but with ᾱs = Nc
π αs(Q1Q2), where Q2

is fixed at Q2 = 2 GeV and Q1 = RQ2
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Fig. 5. Ratio of the leading order BFKL cross section dσ
dt

∣
∣
tmin

to
the Born level cross section as a function of the center-of-mass
energy

√
s, for Q1 = Q2 = Q = 2 GeV (top) and Q1 = 10 GeV

and Q2 = 2 GeV (bottom). The different curves in each plot
correspond to three different definitions of the rapidity variable,
Y = ln(cY s/(Q1Q2). The solid curves are for cY = 1, dashed
curves are for cY = 1/2, and dotted curves are for cY = 2. The
scale of ᾱs is given by cα = 1

dependent coupling for the pomeron decreases the growth
with energy for increasing virtualities.

In Fig. 5 we show the same ratios as a function of the
center-of-mass energy

√
s for Q1 = Q2 = 2 GeV in the

left plot and for Q1 = 10 GeV, Q2 = 2 GeV in the right
plot. The three different curves represent different choices
of the energy scale in the definition of Y , corresponding to
three different values of the parameter cY . This freedom
to change the scale introduces an additional uncertainty
in the results. In Fig. 6 we show the same kind of plot,
but varying instead the parameter cα in the argument of
ᾱs to highlight the uncertainty coming from the choice
of scale in αs. Note that the parameters cY and cα both

affect the argument of the BFKL exponential, and thus
the energy evolution.

Finally, in Fig. 7 we show the ratio as a function of Q =
Q1 = Q2. Thus we see that the BFKL prediction differs
from the Born level prediction in all kinematical variables,
which allows testing BFKL dynamics experimentally, and
possibly fitting the free parameters.

We have now seen that there are several uncertainties
in the calculated amplitude. This has to be kept in mind
when viewing the cross section predictions that will follow.

In Fig. 8 we show the differential cross section
dσ/dt|t=tmin as a function of the photon virtuality Q
in the symmetric case R = 1, i.e. Q = Q1 = Q2, for three
different energies

√
s, and in Fig. 9 we show the same cross

section as a function of
√
s for three different virtualitiesQ.

These predictions are made with the parameter choices
discussed above and contain the corresponding inherent un-
certainties. To get some idea of the possible variation in the
magnitude of the cross section because of the parameters,
we plot in Fig. 10 the cross section for Q = 2 GeV for the
standard parameter choices, and for two extreme versions,
one where we choose new parameters c′α = 1/2cα, c′Y =
2cY and one with c′α = 2 cα, c′Y = 1/2 cY . These curves
are plotted in gray and should give some indication of the
theoretical uncertainty.

3 Estimation of next-to-leading order effects

The BFKL kernel is known to NLL accuracy [20], and the
NLL impact factor for our process has recently been com-
puted [19]. The calculations to obtain the full cross section
are difficult, however, and have not yet been performed. It
will therefore be interesting to estimate the NLL effects on
our calculation. When the cross section is finally computed
it may very well be the first complete NLL cross section
to be obtained, and it will be very interesting to compare
with the estimation presented here.

To estimate higher order effects we thus implement
two improvements to the LL BFKL amplitude. First, we
use BLM scale fixing [15] for the running of the coupling
in the prefactor. Second, we use a renormalization group
resummed BFKL kernel, as will be explained below.

In [14] it is shown that for the BFKL calculation of the
total γ∗γ∗ cross section, the BLM procedure for choosing
the scale leads to µ2 = cαQ1Q2 with cα = e−5/3, and thus
to a larger coupling which will increase the cross section.
In the process γ∗p→ V p at next-to-leading order [25] the
correct scale choice was instead found to be cα = e−1/2.
The use of the BLM procedure in exclusive processes has
been further discussed in [26].

An approximate BLM scale for our process is found
by using the NLL impact factors computed in [19] and
neglecting higher order effects in the BFKL kernel. The
BLMprocedure then, choosing the scale such that the terms
proportional to β0 vanish, leads to the simple choice cα = 1.

The NLL kernel, taken as it is, is larger than the lead-
ing order kernel, and for any reasonable value of αs it is
negative; the pomeron intercept becomes less than one for
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correspond instead to three different scale choices in ᾱs. The
solid curves are for cα = 1, dashed curves are for cα = 1/2,
and dotted curves are for cα = 2. The scale of Y is given by
the standard cY = 0.3
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Fig. 7. Ratio of the leading order BFKL cross section dσ
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Q1 for fixed Q2 = 2 GeV, for three different energies

√
s and

standard scale choices cα, cY as defined in the text
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Fig. 8. Differential cross section dσ/dt|t=tmin as a function of
the photon virtuality Q = Q1 = Q2 for center-of-mass energies√

s = 100 GeV, 300 GeV, and 500 GeV, with standard scale
choices as defined in the text
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Fig. 9. Differential cross section dσ/dt|t=tmin as a function
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√
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virtualities Q = Q1 = Q2 = 2 GeV, 3 GeV, and 4 GeV
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Fig. 10. Differential cross section dσ/dt|t=tmin for photon vir-
tuality Q = Q1 = Q2 = 2 GeV for standard parameters cα, cY

(black curve) and for new parameters c′
α = 1/2cα, c′

Y = 2 cY

and c′
α = 2 cα, c′

Y = 1/2 cY (upper resp. lower gray curves)

αs � 0.15. Furthermore it has two complex conjugate sad-
dle points which can lead to oscillating cross sections. The
perturbative expansion of the BFKL kernel is therefore
highly unstable and far from converging. See [16,17,27] for
a discussion of these problems.

Different groups have proposed curing the problems
of the NLL kernel by certain resummations and methods
to stabilize the expansion. In particular some resumma-
tion schemes have been proposed [16–18, 28] which lead
to modified BFKL kernels2 χ(γ, ω) depending on both γ
and ω. This form comes about because of a resumma-
tion which removes unphysical double logarithms in the
DGLAP and “anti-DGLAP” limits where γ is close to 0
or 1 [16], and which resums logarithms from the running
of the coupling [17]. This means that when performing the
inverse Mellin transform in (2), the position of the pole in
the ω plane is determined by the equation

ω = ᾱsχ(γ, ω). (23)

This equation implicitly defines the function ωNLL(γ) that
we need to perform the integral J(Y,R) over ν = i(1/2−γ).
We therefore estimate the NLL BFKL result by using a
resummed BFKL kernel in the BFKL exponential, but we
keep the LL form of the solution and the impact factors.

The renormalization group (RG) resummed BFKL ker-
nel of Salam [16] and Ciafaloni et al. [17] is actually a

2 The discussion is most conveniently performed using the
variable γ = 1

2 + iν rather than ν.
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resummation of the full NLL kernel, which removes the
problems of this kernel. It is however possible to perform
such a resummation of the LL kernel, which leads to a
result that includes a large part of the corrections coming
from the NLL kernel. One such model, based on the general
idea of the approach of [16, 17] (more specifically Scheme
4 of [16]), was recently proposed by Khoze et al. [18]. This
approach uses a fixed strong coupling in the BFKL kernel
which is essential for the approach here. A running cou-
pling in the BFKL kernel radically changes the properties
of the solutions, and it is no longer possible to evaluate
the ω integral by a simple residue. Therefore we do not
pursue it here, although it may be attempted along the
lines of [29].

We make one modification to the approach of [18]: they
use an asymmetric scale choice in the definition of the
rapidity (see [16,17] for a discussion) which was appropriate
for their problemunder study, but our process ismore suited
for a symmetric scale choice and we therefore perform the
necessary modification. The characteristic function is then
expressed as

χ(γ, ω) = χ0(γ) + ᾱsχ1(γ, ω), (24)

where χ0(γ) ≡ χ(γ) is the usual BFKL function (5). The
correction piece χ1(γ, ω) is given by

ᾱsχ1(γ, ω) =
1 + ωA1(ω)
γ + ω

2
− 1
γ

+
1 + ωA1(ω)
1 − γ + ω

2
− 1

1 − γ

− ωχht
0 (γ), (25)

where χht
0 is the higher twist part of χ0,

χht
0 (γ) = χ0(γ) − 1

γ
− 1

1 − γ

= 2ψ(1) − ψ(1 + γ) − ψ(2 − γ). (26)

A1(ω) is obtained from the Mellin transform of the DGLAP
splitting function Pgg by

1
2Nc

Pgg(ω) =
1
ω

+A1(ω), (27)

with

A1(ω) = − 11
12

− nf

18
+

(
67
36

− π2

6

)
ω + O(ω2). (28)

We will in the following throw away any terms proportional
to ω and only keep singular and constant terms. For nf = 0
we then have A1(ω) 	 −11/12. It is possible to account
for quark loops for nf > 0 by replacing [18]

A1(ω) → A1(ω) + nf

[
ᾱs

4N2
c

1
γ
Pgq(ω)Pqg(ω) − 1

3

]

	 − 11
12

− 7nf

18
+
CF ᾱsnf

6N2
c γ

(
1
ω

− 11
6

)
. (29)

The characteristic kernel ωNLL(γ) obtained by solving
(23) with χ(γ, ω) given by (24) is shown both for nf = 3

0.2 0.4 0.6 0.8 1
Γ

0.25

0.5

0.75

1

1.25

1.5

1.75

2
Ω�Γ�

Fig. 11. The characteristic BFKL functions ωNLL(γ) for the
NLL resummed model with nf = 3 (solid line) and nf = 0
(dotted line) and ω(γ) for LL BFKL (dashed line), for a value
of ᾱs = 0.2. The dot shows the location of the saddle point of
ωNLL(nf = 3), γs = 0.51, while ω(γ) and ωNLL(nf = 0) have
saddle points in γ = 1/2

and nf = 0 in Fig. 11 together with the LL BFKL kernel.
An important feature of the kernel (23) is that for nf = 0
it has no pole at γ = 0. The pole reappears when including
the quark loops as shown above. It is also clear that for
the resummed kernel both the pomeron intercept and the
second derivative at the saddle point are reduced.

To compute the cross section using this model we need
to make use of (23) in performing the integral over ν.
This is possible to do purely numerically, by solving (23)
explicitly for each given value of γ when performing the
integral numerically. However, we may obtain some more
insight into the properties of the NLL corrections by instead
performing the integral by the saddle point method as
in Sect. 2.3. We expect the accuracy of the saddle point
method to be similar to the LL calculation. For the saddle
point calculation we need only compute the position of
the saddle point (γs, ωs), where ωs ≡ ωNLL(γs), and the
particular value ω′′

s ≡ ω′′
NLL(γs). These can be obtained

explicitly in terms of the partial derivatives of the function
χ(γ, ω) as follows.

The chain rule gives

dωNLL(γ)
dγ

= ᾱs

(
∂χ(γ, ω)
∂γ

+
∂χ(γ, ω)
∂ω

dωNLL(γ)
dγ

)
,

(30)
so that the saddle point condition gives

dωNLL(γ)
dγ

∣∣∣∣
γ=γs

= 0 ⇒ ∂χ(γ, ωs)
∂γ

∣∣∣∣
γ=γs

= 0. (31)

We then obtain the second derivative of ωNLL(γ) (using
the saddle point condition)

ω′′
s =

d2ωNLL(γ)
dγ2

∣∣∣∣
γ=γs

=
ᾱs

∂2χ(γ,ωs)
∂γ2

∣∣∣
γ=γs

1 − ᾱs
∂χ(γs,ω)

∂ω

∣∣∣
ω=ωs

. (32)
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Fig. 12. Saddle point approximation of the integral J(Y, R = 1)
for LL BFKL and for the NLL corrected kernel

Finally, to find the saddle point values γs, ωs we must si-
multaneously solve the equations



∂χ(γ, ωs)

∂γ

∣∣∣∣
γ=γs

= 0,

ωs = ᾱsχ(γs, ωs).

(33)

The symmetric scale choice with nf = 0 gives a kernel
symmetric under γ → 1 − γ, so that the saddle point
is always located at γs = 1/2. This does not hold for an
asymmetric kernel obtained either by the asymmetric scale
choice, or, as here, by the inclusion of nf > 0 effects.
The saddle point values γs, ωs must then be determined
separately for each value of ᾱs.

The residue obtained by the integral over ω using the
ω-dependent kernel is different from the LL case; we have

Res
ω=ωs

eωY

ω − ᾱsχ(γs, ω)
=

eωsY

1 − ω̇s
(34)

where we defined the third constant

ω̇s ≡ ᾱs
∂χ(γs, ω)

∂ω

∣∣∣∣
ω=ωs

. (35)

The saddle point evaluation of the integral JNLL(Y,R)
now gives

ANLL(s, t = tmin, Q1, Q2) (36)

∼ isπ5
√

2π
9(N2

c − 1)
4N2

c

α2
sαemf

2
ρ

Q2
1Q

2
2

eωsY√
ω′′

s Y

exp
(
− 2 ln2 R

ω′′
s Y

)
1 − ω̇s

.

We show the difference between the energy evolution of
the LL kernel and the resummed NLL kernel in Fig. 12. This
plot shows the integral J(Y,R = 1) for LL and NLL for a
fixed value ᾱs = 0.2. The growth with rapidity is strongly
reduced by the NLL effects, and the diffusion pattern is
also changed. This is quantified by the pomeron intercept
αP = ωs, which is reduced fromαP = 0.55 toαP = 0.20, and
by the second derivative ω′′

s of the kernel, which decreases
from ω′′

s = 28ᾱsζ(3) 	 6.73 at the LL level to ω′′
s 	 2.56

200 400 600 800 1000
�����

s �GeV�
10�2

100

102

104

106

108

dΣ�dt�t�tmin
�pb�GeV2�

Fig. 13. Cross section for LL BFKL (dashed lines) and for
the NLL corrected kernel (solid lines), using cY = 0.3 and the
BLM scale choice cα = 1, for the three cases Q = Q1 = Q2 =
2 GeV, 3 GeV and 4 GeV (from top to bottom in the plot)

using the NLL approximation.3 The overall normalization
is also affected by the factor 1/(1 − ω̇s), where in this
case ω̇s 	 −1.51.

The complete cross section prediction from the NLL
modified amplitudes with BLM scale choice is shown in
Fig. 13 as a function of the energy. The dashed line shows
the LL BFKL result for comparison.

4 Conclusions

Since we expect the linear collider to be able to cover a quite
large region in rapidity, experiments will allow us to test the
dynamics of pomeron exchange. The Born approximation
estimate [3] of this reaction showed that the process γ∗γ∗ →
ρρ should be measurable by dedicated experiments at the
next linear collider, for virtualities of the photons up to
a few GeV2. The increase of the amplitude that we have
obtained when considering BFKL resummation effects is
good news for the experimental feasibility of this study. At
leading order the growth with energy is very large, but the
next-to-leading order effects seem to moderate the growth.

This exclusive diffractive reaction may as anticipated
become the best tool to investigate the perturbative picture
of the hard pomeron. For example, considering that the full
next-to-leading order BFKL calculation of the cross section
is likely to appear in the near future [19], measurements of
this process would be able to test the impact of the NLL
corrections and the various approaches proposed in the
literature. Finally, it would also be interesting to pursue
this line of research with odderon exchange processes such
as γ∗γ∗ → π0π0 or through interference effects in charge
asymmetric observables in γ∗γ∗ → π+π−π+π− [30].

Note added. Shortly after submitting this paper, the pa-
per [31] appeared, containing the full NLL calculation al-
luded to above, and confirming our LL results. We also note
that the BLM scale we obtained under our assumptions
in Sect. 3 is not changed if the NLL effects on the BFKL
kernel are included.

3 Note that these values of ωs and ω′′
s depend on the value of

ᾱs, so care has to be taken to determine them correctly when
using (36).
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Appendix A: Born limit

In order to simplify the presentation that follows, we will
make this check in two steps. First, we evaluate the in-
tegral J(0, 1) exactly, that is, in the case that R = 1, by
picking up all the residues of the integrand in the correct
half-plane. Second, the method is generalized to the case
where R is arbitrary. In the asymptotic limit R � 1, the
leading contribution can then be easily extracted, as was
also done in [3], and further, an explicit twist expansion
can be written.

For fixed R, the integral is now just a constant number.
Changing to the integration variable γ = 1

2 + iν, we get

J(0, R) =
1
R

∫ 1/2+i∞

1/2−i∞

dγ
i
g(γ), (37)

where
g(γ) ≡ R2γ g1(γ) (38)

with

g1(γ) ≡ π3γ(1 − γ)
Γ (5/2 − γ)Γ (3/2 + γ) sin3(πγ)

=
f1(γ)

sin3(πγ)
.

(39)
In the following, we will use the auxiliary functions f and
f1 defined by

g(γ) ≡ f(γ)
sin3(πγ)

≡ R2γ f1(γ)
sin3(πγ)

. (40)

The function g(γ) obviously has triple poles at all integers
as given by the sin3(πγ) factor, except at γ = 0, 1 where
it has double poles.

Let us start with the case R = 1. The integration con-
tour (in γ) is parallel to the imaginary axis and crosses
the real axis between 0 and 1. The contour can be closed
arbitrarily to the right or to the left. We choose to close
the contour in the left half-plane and thus to pick up all
the poles at γ = −n, n = 0, 1, 2, . . .

To extract the triple pole residues at γ = −n, n =
1, 2, . . . we write γ = x − n where n ∈ Z, n �= 0, 1 and
x ∈ R, x� 1 so that

g(γ) =
f(x− n)

sin3 π(x− n)
	 (−1)n

(πx)3

[
1 +

π2x2

2

]
f(x− n).

(41)
The residue at γ = −n is the residue at x = 0, which is by
definition for the triple poles

Res
γ=−n

g(γ) (42)

= lim
x→0

1
2!

d2

dx2

(
x3 (−1)n

(πx)3

[
1 +

π2x2

2

]
f(x− n)

)
.

Taylor expanding f(x−n) around x = 0 now easily yields
the needed expression:

Res
γ=−n

g(γ) =
(−1)n

2π3

(
f ′′(−n) + π2f(−n)

)
. (43)

This is the first step in the evaluation. We also need a
convenient form for f ′′(−n) that can be summed over n. In
order to proceed we rewrite f1 without any Γ -functions as

f1(γ) =
π2γ(1 − γ) cos πγ

(1/2 − γ)(1/2 + γ)(3/2 − γ)
. (44)

From this expression, we get after some algebra the deriva-
tives of f1 up to the second order, at the pole−n, in the form

f1(−n) = (−1)n π2

4

(
3

(2n− 1)
+

2
(2n+ 1)

+
3

(2n+ 3)

)
,

f ′
1(−n) = (−1)n π2

2

×
(

3
(2n− 1)2

+
2

(2n+ 1)2
+

3
(2n+ 3)2

)
,

f ′′
1 (−n) = −π2 f1(−n) + (−1)n2π2 (45)

×
(

3
(2n− 1)3

+
2

(2n+ 1)3
+

3
(2n+ 3)3

)
,

which immediately leads, for n > 0, to

Res
γ1=−n

g1(γ) =
1
π

[
3

(2n− 1)3
+

2
(2n+ 1)3

+
3

(2n+ 3)3

]
.

(46)
The sum over all residues in the left half-plane is therefore
related to the definition of the Riemann ζ-function, so

∞∑
n=1

Res
γ=−n

g1(γ) =
63ζ(3) − 46

9π
. (47)

To evaluate the integral we should also include the double
pole of g1(γ) in γ = 0. Defining

h1(γ) = γ2g1(γ) (48)

one gets

h1(0) =
8
3π

and h′
1(0) = − 8

9π
, (49)

and thus the residue is −8/(9π). So finally,

∞∑
n=0

Res
γ=−n

g1(γ) =
7ζ(3) − 6

π
. (50)

For our first goal which was to consider R = 1, for which
g(γ) = g1(γ), this sum of residues of g1 is enough and thus
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J(0, 1) = 14ζ(3)− 12. The answer for the Born amplitude
at Q1 = Q2 = Q therefore is

ABorn(s, tmin, Q)

= is
N2

c − 1
N2

c

α2
sαemf

2
ρ

9π2

Q4 (14ζ(3) − 12), (51)

which is exactly the same as in [3].
Let us now study the general case. Note first that the

limits R � 1 and R � 1 are of special physical interest,
since they correspond to the kinematics typical for deep in-
elastic scattering on a photon target described through the
collinear approximation, i.e. the usual parton model [32].
From (37)–(39), the γ-contour can be closed on the left (re-
spectively right) half-plane for R > 1 (respectively R < 1).
Let us investigate the case R > 1. As above for g1, the in-
tegrand g has infinitely many poles: a double pole at γ = 1
and triple poles at all other integers. Since we are clos-
ing the contour in the left half-plane we need only worry
about the poles at γ = −|n|. Using the method that we
used above for R = 1 gives an expression for the residues
at theses poles, and a related series expansion in powers of
1/R2 for J(0, R). It consists of a term corresponding to the
double pole at 0 (which is leading at large R), plus terms
that are suppressed with at least a power 1/R2n compared
to the γ = 0 pole. Note that this expansion with respect
to 1/R2, for fixed values of Q2, corresponds to a twist ex-
pansion. The full resummation of this twist expansion can
be performed, as we explain now.

Denoting
h(γ) = R2γh1(γ) (52)

one can readily extract the pole of g(γ) at 0 through the re-
lation

h′(0) = 2 lnRh1(0) + h′(0), (53)

which leads to

h′(0) =
16
3π

(
lnR− 1

6

)
,

and thus to

J(0, R� 1) ∼ 32
3

(
lnR
R

− 1
6R

)
, (54)

which, inserted in formula (14) for the amplitude, gives

ABorn(s, tmin, Q1 = R Q2, Q2)

= is
N2

c − 1
N2

c

α2
sαemf

2
ρ

96π2

Q4
2R

2

(
lnR
R

− 1
6R

)
. (55)

This is again exactly the result as in [3]. Let us go further.
Combining (43) and (38)–(40), one obtains

Res
γ=−n

g(γ)

= Res
γ=−n

g1(γ) (56)

+(−1)n 2
π3

1
R2n

(ln2Rf1(−n) + lnRf ′
1(−n)).

Using the result (45) for f1 and f ′
1, and relating the obtained

series to the Li2 and Li3 series

Li2(z) =
∞∑

k=0

zk

k2 , Li3(z) =
∞∑

k=0

zk

k3 , (57)

one finally gets, after using (46) and (54),

J(0, R) (58)

= −6
(
R+

1
R

)
− 6

(
R− 1

R

)
lnR− 3

(
R+

1
R

)
ln2R

+
[

3
R

+ 2 + 3R2
]

×
[(

ln
(

1 +
1
R

)
− ln

(
1 − 1

R

))
ln2R

2

+
(

Li2

(
1
R

)
− Li3

(
− 1
R

))
lnR

+
(

Li3

(
1
R

)
− Li3

(
− 1
R

))]
,

which is in agreement with the result obtained in [3], al-
though the formula given there is expressed in a different
way. After some transformations using the Landen rela-
tions [33] for Li2 and Li3 one finds that the two expres-
sions match. The obtained formula (58) is very convenient
to obtain the twist expansion. We illustrate this in the
following formula, by giving the first twist correction to
the amplitude,

ABorn(s, tmin, Q1 = R Q2, Q2)

= is
N2

c − 1
N2

c

α2
sαemf

2
ρ

96π2

Q4
2R

2

×
[

1
R

(
lnR− 1

6

)
+

1
R3

(
2
5

ln2R+
47
75

lnR+
1307
2250

)

+ . . .

]
. (59)
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